

B.Sc.DEGREE (CBCS) EXAMINATION, NOVEMBER 2019

First Semester

B.Sc Electronics Model III

Complementary Course - PH1CMT03 - PHYSICS-SOLID STATE PHYSICS

2017 Admission Onwards

EA4A436E

Time: 3 Hours

Maximum Marks:80

Part A

Answer any ten questions.

Each question carries 2 marks.

- 1. What are Miller indices?
- 2. Why covalent bond is most common and strongest among bonds?
- 3. What is the importance of Schrödinger's equation?
- 4. Why Schrödinger's equation is linear in the wave function, y?
- 5. What do you mean by free electron gas model?
- 6. What do you mean by Fermi surface?
- 7. What is Bloch theorem?
- 8. What are donor and acceptor impurities?
- 9. What is mobility in semiconductors?
- 10. Why carrier concentration of holes and electrons are same in an intrinsic semiconductor?
- 11. What is superconductivity?
- 12. Give the expression for critical field in superconductivity.

 $(10 \times 2 = 20)$

Part B

Answer any six questions.

Each question carries 5 marks.

- 13. Define: 1. Unit Cell 2. Bravais lattice with proper illustrations
- 14. Explain the concept of dual nature of matter and derive the expression for de Broglie waves.

Page 1/2

Turn Over

- 15. Show that $y = Ae^{-i\omega(t-x/v)}$ s a solution of the wave equation $\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$
- 16. Derive the expression for conductivity in metals.
- 17. Explain the classification of materials according to band theory concept and band gap energy.
- 18. With proper mathematical formulations, explain the law of mass action.
- 19. Explain Hall coefficient and its significance.
- 20. Explain how magnetic materials are classified according to magnetic susceptibility?
- 21. Describe the cause and features of ferromagnetic domains.

 $(6 \times 5 = 30)$

Part C

Answer any two questions.

Each question carries 15 marks.

- 22. Explain the 14 Bravais lattices in crystal systems
- 23. Draw and explain the experimental set up to conduct Davisson-Germer experiment to confirm the presence of matter waves
- 24. Explain the energy band structure in atoms, molecules and solids. Explain the band structure in metals, insulators and semiconductors.
- 25. Explain the energy band structure of an intrinsic and extrinsic semiconductor

 $(2 \times 15 = 30)$

