

QP CODE: 18103801

Reg No :

lame : ..

B.Sc.DEGREE(CBCS)EXAMINATION, DECEMBER 2018

First Semester

B.Sc Electronics Model III

Complementary Course - PH1CMT03 - PHYSICS-SOLID STATE PHYSICS

2018 Admission only

C66087D1

Maximum Marks: 80

Time: 3 Hours

Part A

Answer any ten questions.

Each question carries 2 marks.

- 1. What is the objective of rotating-crystal method experiment?
- 2. What is covalent bonding and give one example?
- 3. Compare between classical mechanics and quantum mechanics.
- 4. Define wave function, y
- 5. What do you mean by free electron gas model?
- 6. What is Fermi level energy?
- 7. What do you mean by Fermi surface?
- 8. What do you mean by an intrinsic semiconductor?
- 9. What is law of mass action?
- 10. Give any one application of determining Hall coefficient.
- 11. Define gyromagnetic ratio.
- 12. Give the importance of magnetic hysterisis.

 $(10 \times 2 = 20)$

Part B

Answer any six questions.

Each question carries 5 marks.

- 13. Draw the crytal planes for a cubic lattice with Miller indices: a. (1 0 0) b. (0 0 1) c. (0 1 0)
- 14. Derive the expression for de Broglie waves. Calculate the de Broglie wavelength associated with an electron which is accelarated in a 100 KeV potential.

Page 1/2

Turn Over

- 15. Write the Schrödinger's equation in time dependant and steady state form. Explain the significance of Schrödinger's equation.
- 16. Explain how energy bands are formed in solids.
- Explain the classification of materials according to band theory concept and band gap energy.
- 18. Explain the conduction and valence band energies in a semiconductor.
- 19. Explain drift velocity, mean life time and mobility of charge carriers.
- 20. Explain antiferromagnetism and ferrimagnetism in materials.
- 21. Distinguish between Type I and Type II superconductors.

 $(6 \times 5 = 30)$

Part C

Answer any two questions.

Each question carries 15 marks.

- 22. What are the various properties of a crystal that will make it a perfect solid?
- 23. Explain Davisson-Germer experiment to confirm matter waves.
- 24. Explain the energy band structure in atoms, molecules and solids. Explain the band structure in metals, insulators and semiconductors.
- 25. Explain the carrier concentration in a pure semiconductor material with necessary mathematical expressions.

 $(2 \times 15 = 30)$

